- Restructured to follow /init specifications for Claude Code - Added clear command reference for setup and development - Documented architecture patterns (tool system, providers, conversation continuity) - Explained schema generation and file processing systems - Removed planning/roadmap content (belongs in PLAN.md) - Added practical debugging tips and implementation patterns - Focused on non-obvious architecture insights
383 lines
12 KiB
Markdown
383 lines
12 KiB
Markdown
# CLAUDE.md
|
|
|
|
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
|
|
|
## Project Overview
|
|
|
|
Zen-Marketing is an MCP server for Claude Desktop providing AI-powered marketing tools. It's a fork of Zen MCP Server, specialized for marketing workflows rather than software development.
|
|
|
|
**Key distinction:** This server generates content variations, enforces writing styles, and optimizes for platforms (LinkedIn, newsletters, WordPress) - not code review or debugging.
|
|
|
|
**Target user:** Solo marketing professionals managing technical B2B content (HVAC, SaaS, technical education).
|
|
|
|
## Essential Commands
|
|
|
|
### Setup and Running
|
|
|
|
```bash
|
|
# Initial setup
|
|
./run-server.sh
|
|
|
|
# Manual setup
|
|
python3 -m venv .venv
|
|
source .venv/bin/activate
|
|
pip install -r requirements.txt
|
|
cp .env.example .env
|
|
# Edit .env with API keys
|
|
|
|
# Run server
|
|
python server.py
|
|
|
|
# Run with debug logging
|
|
LOG_LEVEL=DEBUG python server.py
|
|
```
|
|
|
|
### Testing and Development
|
|
|
|
```bash
|
|
# Watch logs during development
|
|
tail -f logs/mcp_server.log
|
|
|
|
# Filter logs for specific tool
|
|
tail -f logs/mcp_server.log | grep -E "(TOOL_CALL|ERROR|contentvariant)"
|
|
|
|
# Test with Claude Desktop after changes
|
|
# Restart Claude Desktop to reload MCP server configuration
|
|
```
|
|
|
|
### Claude Desktop Configuration
|
|
|
|
Configuration file: `~/.claude.json` or `~/Library/Application Support/Claude/claude_desktop_config.json`
|
|
|
|
```json
|
|
{
|
|
"mcpServers": {
|
|
"zen-marketing": {
|
|
"command": "/Users/ben/dev/mcp/zen-marketing/.venv/bin/python",
|
|
"args": ["/Users/ben/dev/mcp/zen-marketing/server.py"],
|
|
"env": {
|
|
"GEMINI_API_KEY": "your-key",
|
|
"DEFAULT_MODEL": "google/gemini-2.5-pro-latest",
|
|
"FAST_MODEL": "google/gemini-2.5-flash-preview-09-2025",
|
|
"CREATIVE_MODEL": "minimax/minimax-m2",
|
|
"ENABLE_WEB_SEARCH": "true",
|
|
"LOG_LEVEL": "INFO"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**Critical:** After modifying configuration, restart Claude Desktop completely for changes to take effect.
|
|
|
|
## Architecture Overview
|
|
|
|
### Tool System Design
|
|
|
|
The codebase uses a two-tier tool architecture inherited from Zen MCP Server:
|
|
|
|
1. **Simple Tools** (`tools/simple/base.py`): Single-shot request/response tools for fast iteration
|
|
- Example: `contentvariant` - generates 5-25 variations in one call
|
|
- Use `ToolModelCategory.FAST_RESPONSE` for quick operations
|
|
- Inherit from `SimpleTool` base class
|
|
|
|
2. **Workflow Tools** (`tools/workflow/base.py`): Multi-step systematic processes
|
|
- Track `step_number`, `total_steps`, `next_step_required`
|
|
- Maintain `findings` and `confidence` across steps
|
|
- Example: `styleguide` - detect → flag → rewrite → validate
|
|
- Use `ToolModelCategory.DEEP_THINKING` for complex analysis
|
|
|
|
### Provider System
|
|
|
|
Model providers are managed through a registry pattern (`providers/registry.py`):
|
|
|
|
- **Priority order:** GOOGLE (Gemini) → OPENAI → XAI → DIAL → CUSTOM → OPENROUTER
|
|
- **Lazy initialization:** Providers are only instantiated when first needed
|
|
- **Model categories:** Tools request `FAST_RESPONSE` or `DEEP_THINKING`, registry selects best available model
|
|
- **Fallback chain:** If primary provider fails, falls back to next in priority order
|
|
|
|
Key providers:
|
|
- `gemini.py` - Google Gemini API (analytical work)
|
|
- `openai_compatible.py` - OpenAI and compatible APIs
|
|
- `openrouter.py` - Fallback for cloud models
|
|
- `custom.py` - Self-hosted models
|
|
|
|
### Conversation Continuity
|
|
|
|
Every tool supports `continuation_id` for stateful conversations:
|
|
|
|
1. First call returns a `continuation_id` in response
|
|
2. Subsequent calls include this ID to preserve context
|
|
3. Stored in-memory with 6-hour expiration (configurable)
|
|
4. Managed by `utils/conversation_memory.py`
|
|
|
|
This allows follow-up interactions like:
|
|
- "Now check if this new draft matches the voice" (after voice analysis)
|
|
- "Generate 10 more variations with different angles" (after initial generation)
|
|
|
|
### File Processing
|
|
|
|
Tools automatically handle file inputs (`utils/file_utils.py`):
|
|
- Directory expansion (recursively processes all files in directory)
|
|
- Deduplication (removes duplicate file paths)
|
|
- Image support (screenshots, brand assets via `utils/image_utils.py`)
|
|
- Path resolution (converts relative to absolute paths)
|
|
|
|
Files are included in model context, so tools can reference brand guidelines, content samples, etc.
|
|
|
|
### Schema Generation
|
|
|
|
Tools use a builder pattern for MCP schemas (`tools/shared/schema_builders.py`):
|
|
- `SchemaBuilder` - Generates MCP tool schemas from Pydantic models
|
|
- `WorkflowSchemaBuilder` - Specialized for workflow tools with step tracking
|
|
- Automatic field type conversion (Pydantic → JSON Schema)
|
|
- Shared field definitions (files, images, continuation_id, model, temperature)
|
|
|
|
## Tool Implementation Pattern
|
|
|
|
### Creating a Simple Tool
|
|
|
|
```python
|
|
# tools/mymarketingtool.py
|
|
from pydantic import Field
|
|
from tools.shared.base_models import ToolRequest
|
|
from tools.simple.base import SimpleTool
|
|
from tools.models import ToolModelCategory
|
|
from systemprompts import MYMARKETINGTOOL_PROMPT
|
|
from config import TEMPERATURE_CREATIVE
|
|
|
|
class MyMarketingToolRequest(ToolRequest):
|
|
content: str = Field(..., description="Content to process")
|
|
platform: str = Field(default="linkedin", description="Target platform")
|
|
|
|
class MyMarketingTool(SimpleTool):
|
|
def get_name(self) -> str:
|
|
return "mymarketingtool"
|
|
|
|
def get_description(self) -> str:
|
|
return "Brief description shown in Claude Desktop"
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return MYMARKETINGTOOL_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_CREATIVE
|
|
|
|
def get_model_category(self) -> ToolModelCategory:
|
|
return ToolModelCategory.FAST_RESPONSE
|
|
|
|
def get_request_model(self):
|
|
return MyMarketingToolRequest
|
|
```
|
|
|
|
### Registering a Tool
|
|
|
|
In `server.py`, add to the `_initialize_tools()` method:
|
|
|
|
```python
|
|
from tools.mymarketingtool import MyMarketingTool
|
|
|
|
def _initialize_tools(self) -> list[BaseTool]:
|
|
tools = [
|
|
ChatTool(),
|
|
ContentVariantTool(),
|
|
MyMarketingTool(), # Add here
|
|
# ... other tools
|
|
]
|
|
return tools
|
|
```
|
|
|
|
### System Prompt Structure
|
|
|
|
System prompts live in `systemprompts/`:
|
|
|
|
```python
|
|
# systemprompts/mymarketingtool_prompt.py
|
|
MYMARKETINGTOOL_PROMPT = """
|
|
You are a marketing content specialist.
|
|
|
|
TASK: [Clear description of what this tool does]
|
|
|
|
OUTPUT FORMAT:
|
|
[Specify exact format - JSON, markdown, numbered list, etc.]
|
|
|
|
CONSTRAINTS:
|
|
- Character limits for platform
|
|
- Preserve brand voice
|
|
- Technical accuracy required
|
|
|
|
PROCESS:
|
|
1. Step one
|
|
2. Step two
|
|
3. Final output
|
|
"""
|
|
```
|
|
|
|
**Import in systemprompts/__init__.py:**
|
|
|
|
```python
|
|
from .mymarketingtool_prompt import MYMARKETINGTOOL_PROMPT
|
|
```
|
|
|
|
## Temperature Configurations
|
|
|
|
Defined in `config.py` for different content types:
|
|
|
|
- `TEMPERATURE_PRECISION` (0.2) - Fact-checking, technical verification
|
|
- `TEMPERATURE_ANALYTICAL` (0.3) - Style enforcement, SEO optimization
|
|
- `TEMPERATURE_BALANCED` (0.5) - Strategic planning, guest editing
|
|
- `TEMPERATURE_CREATIVE` (0.7) - Platform adaptation
|
|
- `TEMPERATURE_HIGHLY_CREATIVE` (0.8) - Content variation, subject lines
|
|
|
|
Choose based on whether tool needs creativity (variations) or precision (fact-checking).
|
|
|
|
## Platform Character Limits
|
|
|
|
Defined in `config.py` as `PLATFORM_LIMITS`:
|
|
|
|
```python
|
|
PLATFORM_LIMITS = {
|
|
"twitter": 280,
|
|
"bluesky": 300,
|
|
"linkedin": 3000,
|
|
"linkedin_optimal": 1300,
|
|
"instagram": 2200,
|
|
"facebook": 500,
|
|
"email_subject": 60,
|
|
"email_preview": 100,
|
|
"meta_description": 156,
|
|
"page_title": 60,
|
|
}
|
|
```
|
|
|
|
Tools reference these when generating platform-specific content.
|
|
|
|
## Model Selection Strategy
|
|
|
|
Tools specify category, not specific model:
|
|
|
|
- **FAST_RESPONSE** → Uses `FAST_MODEL` from config (default: gemini-flash)
|
|
- **DEEP_THINKING** → Uses `DEFAULT_MODEL` from config (default: gemini-2.5-pro)
|
|
|
|
Users can override:
|
|
1. Via `model` parameter in tool request
|
|
2. Via environment variables (`DEFAULT_MODEL`, `FAST_MODEL`, `CREATIVE_MODEL`)
|
|
|
|
**Default models:**
|
|
- Analytical work: `google/gemini-2.5-pro-latest`
|
|
- Fast generation: `google/gemini-2.5-flash-preview-09-2025`
|
|
- Creative content: `minimax/minimax-m2`
|
|
|
|
## Debugging Tips
|
|
|
|
### Tool Not Appearing
|
|
|
|
1. Check tool is registered in `server.py`
|
|
2. Verify not in `DISABLED_TOOLS` env var
|
|
3. Check logs: `tail -f logs/mcp_server.log`
|
|
4. Restart Claude Desktop after config changes
|
|
|
|
### Model Errors
|
|
|
|
1. Verify API key in `.env` file
|
|
2. Check provider supports requested model
|
|
3. Look for provider errors in logs
|
|
4. Test with explicit model name override
|
|
|
|
### Response Issues
|
|
|
|
1. Check system prompt specifies output format clearly
|
|
2. Verify response doesn't exceed token limits
|
|
3. Review logs for truncation warnings
|
|
4. Test with simpler input first
|
|
|
|
### Conversation Context Lost
|
|
|
|
1. Verify `continuation_id` passed correctly
|
|
2. Check conversation hasn't expired (6 hours default)
|
|
3. Look for memory errors in logs: `grep "continuation_id" logs/mcp_server.log`
|
|
|
|
## Project Structure
|
|
|
|
Key directories:
|
|
|
|
- `server.py` - MCP server implementation, tool registration
|
|
- `config.py` - Configuration constants, temperature defaults, platform limits
|
|
- `tools/` - Tool implementations (simple/ and workflow/ subdirs)
|
|
- `providers/` - AI model provider implementations
|
|
- `systemprompts/` - System prompts for each tool
|
|
- `utils/` - Shared utilities (file handling, conversation memory, image processing)
|
|
- `logs/` - Server logs (gitignored)
|
|
|
|
## Marketing-Specific Context
|
|
|
|
### Writing Style Rules
|
|
|
|
From project memories, tools should enforce:
|
|
- No em-dashes (use periods or semicolons)
|
|
- No "This isn't X, it's Y" constructions
|
|
- Direct affirmative statements over negations
|
|
- Semantic variety in paragraph openings
|
|
- Concrete metrics over abstract claims
|
|
|
|
### Testing Angles for Variations
|
|
|
|
Common psychological angles for A/B testing:
|
|
- Technical curiosity
|
|
- Contrarian/provocative
|
|
- Knowledge gap emphasis
|
|
- Urgency/timeliness
|
|
- Insider knowledge
|
|
- Problem-solution framing
|
|
- Before-after transformation
|
|
- Social proof/credibility
|
|
- FOMO (fear of missing out)
|
|
- Educational value
|
|
|
|
### Platform Best Practices
|
|
|
|
- **LinkedIn**: 1300 chars optimal (3000 max), professional tone
|
|
- **Twitter/Bluesky**: 280 chars, conversational, high engagement hooks
|
|
- **Email subject**: 60 chars, action-oriented, clear value prop
|
|
- **Instagram**: 2200 chars, visual storytelling, emojis appropriate
|
|
- **Blog/WordPress**: SEO-optimized titles (<60 chars), meta descriptions (<156 chars)
|
|
|
|
## Key Differences from Zen MCP Server
|
|
|
|
1. **Removed tools:** debug, codereview, refactor, testgen, secaudit, docgen, tracer, precommit
|
|
2. **Added tools:** contentvariant, platformadapt, subjectlines, styleguide, seooptimize, guestedit, linkstrategy, factcheck
|
|
3. **Kept tools:** chat, thinkdeep, planner (useful for marketing strategy)
|
|
4. **New focus:** Content variation, platform adaptation, voice preservation
|
|
5. **Model preference:** Minimax for creative generation, Gemini for analytical work
|
|
|
|
## Current Implementation Status
|
|
|
|
**Completed:**
|
|
- [x] Core architecture from Zen MCP Server
|
|
- [x] Provider system (Gemini, OpenAI, OpenRouter)
|
|
- [x] Tool base classes (SimpleTool, WorkflowTool)
|
|
- [x] Conversation continuity system
|
|
- [x] File processing utilities
|
|
- [x] Basic tools: chat, contentvariant, listmodels, version
|
|
|
|
**In Progress:**
|
|
- [ ] Additional simple tools (platformadapt, subjectlines, factcheck)
|
|
- [ ] Workflow tools (styleguide, seooptimize, guestedit, linkstrategy)
|
|
- [ ] Minimax provider configuration
|
|
- [ ] Advanced features (voiceanalysis, campaignmap)
|
|
|
|
See PLAN.md for detailed implementation roadmap.
|
|
|
|
## Git Workflow
|
|
|
|
**Commit signature:** Ben Reed `ben@tealmaker.com` (not Claude Code)
|
|
|
|
**Commit frequency:** After reasonable amount of updates (not after every small change)
|
|
|
|
## Resources
|
|
|
|
- MCP Protocol: https://modelcontextprotocol.com
|
|
- Zen MCP Server (parent project): https://github.com/BeehiveInnovations/zen-mcp-server
|
|
- Claude Desktop download: https://claude.ai/download
|
|
- Project planning: See PLAN.md for tool designs and implementation phases
|
|
- User documentation: See README.md for end-user features
|