zen-marketing/tools/contentvariant.py
Ben f0bd374926 Fix critical prompt field error in all marketing tools
## Problem
All 4 marketing tools (contentvariant, subjectlines, platformadapt, factcheck)
were calling prepare_chat_style_prompt() which expects request.prompt field.
This caused "object has no field 'prompt'" errors in Claude Desktop.

## Root Cause
The prepare_prompt() methods were:
1. Building prompt_text string
2. Creating a copy of request
3. Setting request_copy.prompt = prompt_text
4. Calling prepare_chat_style_prompt(request_copy)

But ToolRequest (and subclasses) don't have a 'prompt' field, causing
AttributeError when prepare_chat_style_prompt tries to access it.

## Solution
Changed all prepare_prompt() methods to return the prompt string directly
instead of calling prepare_chat_style_prompt(). This is the correct pattern
for SimpleTool implementations.

## Files Changed
- tools/contentvariant.py: Removed copy() and prepare_chat_style_prompt() call
- tools/subjectlines.py: Removed copy() and prepare_chat_style_prompt() call
- tools/platformadapt.py: Removed copy() and prepare_chat_style_prompt() call
- tools/factcheck.py: Removed copy() and prepare_chat_style_prompt() call

## Testing
- Server startup:  All 7 tools load successfully
- Tool instantiation:  All tools initialize without errors

## Impact
This fixes the schema errors preventing users from using the new Phase 2 tools
in Claude Desktop. All tools should now work correctly.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-07 14:12:19 -04:00

184 lines
7.2 KiB
Python

"""Content Variant Generator Tool
Generates multiple variations of marketing content for A/B testing.
Supports testing different hooks, tones, lengths, and psychological angles.
"""
from typing import Optional
from pydantic import Field
from config import TEMPERATURE_HIGHLY_CREATIVE
from systemprompts import CONTENTVARIANT_PROMPT
from tools.models import ToolModelCategory
from tools.shared.base_models import ToolRequest
from tools.simple.base import SimpleTool
class ContentVariantRequest(ToolRequest):
"""Request model for Content Variant Generator"""
content: str = Field(
...,
description="Base content or topic to create variations from. Can be a draft post, subject line, or content concept.",
)
variation_count: int = Field(
default=10,
ge=5,
le=25,
description="Number of variations to generate (5-25). Default is 10.",
)
variation_types: Optional[list[str]] = Field(
default=None,
description="Types of variations to explore: 'hook', 'tone', 'length', 'structure', 'cta', 'angle'. Leave empty for mixed approach.",
)
platform: Optional[str] = Field(
default=None,
description="Target platform for character limits and formatting: 'twitter', 'bluesky', 'linkedin', 'instagram', 'facebook', 'email_subject', 'blog'",
)
constraints: Optional[str] = Field(
default=None,
description="Additional constraints: character limits, style requirements, brand voice guidelines, prohibited words/phrases",
)
testing_angles: Optional[list[str]] = Field(
default=None,
description="Specific psychological angles to test: 'curiosity', 'contrarian', 'knowledge_gap', 'urgency', 'insider', 'problem_solution', 'social_proof', 'transformation'",
)
class ContentVariantTool(SimpleTool):
"""Generate multiple content variations for A/B testing"""
def get_name(self) -> str:
return "contentvariant"
def get_description(self) -> str:
return (
"Generate 5-25 variations of marketing content for A/B testing. "
"Tests different hooks, tones, lengths, and psychological angles. "
"Ideal for subject lines, social posts, email copy, and ads. "
"Each variation includes testing rationale and predicted audience response."
)
def get_system_prompt(self) -> str:
return CONTENTVARIANT_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_HIGHLY_CREATIVE
def get_model_category(self) -> ToolModelCategory:
return ToolModelCategory.FAST_RESPONSE
def get_request_model(self):
return ContentVariantRequest
def get_tool_fields(self) -> dict:
"""
Tool-specific field definitions for ContentVariant.
Note: This method isn't used since we override get_input_schema(),
but it's required by the SimpleTool abstract base class.
"""
return {
"content": {
"type": "string",
"description": "Base content or topic to create variations from",
}
}
async def prepare_prompt(self, request: ContentVariantRequest) -> str:
"""Prepare the content variant prompt"""
prompt_parts = [f"Generate {request.variation_count} variations of this content:"]
prompt_parts.append(f"\n**Base Content:**\n{request.content}")
if request.platform:
prompt_parts.append(f"\n**Target Platform:** {request.platform}")
if request.variation_types:
prompt_parts.append(f"\n**Variation Types:** {', '.join(request.variation_types)}")
if request.testing_angles:
prompt_parts.append(f"\n**Testing Angles:** {', '.join(request.testing_angles)}")
if request.constraints:
prompt_parts.append(f"\n**Constraints:** {request.constraints}")
prompt_parts.append(
"\nGenerate variations with clear labels, character counts (if platform specified), "
"testing angles, and predicted audience responses."
)
# Return the complete prompt
return "\n".join(prompt_parts)
def get_input_schema(self) -> dict:
"""Return the JSON schema for this tool's input"""
return {
"type": "object",
"properties": {
"content": {
"type": "string",
"description": "Base content or topic to create variations from",
},
"variation_count": {
"type": "integer",
"description": "Number of variations to generate (5-25, default 10)",
"minimum": 5,
"maximum": 25,
"default": 10,
},
"variation_types": {
"type": "array",
"items": {"type": "string"},
"description": "Types: 'hook', 'tone', 'length', 'structure', 'cta', 'angle'",
},
"platform": {
"type": "string",
"description": "Platform: 'twitter', 'bluesky', 'linkedin', 'instagram', 'facebook', 'email_subject', 'blog'",
},
"constraints": {
"type": "string",
"description": "Character limits, style requirements, brand guidelines",
},
"testing_angles": {
"type": "array",
"items": {"type": "string"},
"description": "Angles: 'curiosity', 'contrarian', 'knowledge_gap', 'urgency', 'insider', 'problem_solution', 'social_proof', 'transformation'",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Optional brand guidelines or style reference files",
},
"images": {
"type": "array",
"items": {"type": "string"},
"description": "Optional visual assets for context",
},
"continuation_id": {
"type": "string",
"description": "Thread ID to continue previous conversation",
},
"model": {
"type": "string",
"description": "AI model to use (leave empty for default fast model)",
},
"temperature": {
"type": "number",
"description": "Creativity level 0.0-1.0 (default 0.8 for high variation)",
"minimum": 0.0,
"maximum": 1.0,
},
"thinking_mode": {
"type": "string",
"description": "Thinking depth: minimal, low, medium, high, max",
"enum": ["minimal", "low", "medium", "high", "max"],
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for current platform best practices",
"default": False,
},
},
"required": ["content"],
}